WGIN3 Legacy and Overview of the WGIN4 Core Project

Kim Hammond-Kosack

Rothamsted Research

Department for Environment Food & Rural Affairs

16th November 2018, 16th Stakeholder meeting, RRes, Herts

WGIN provides a research platform for the delivery of - tools

- resources
- bioinformatics (large scale DNA analyses)
- expertise for the identification of naturally occurring (useful) genetic variation in new traits

Yield and quality per se are excluded

funds to wheat research by other sponsors

Projects of 5 years and 3 years duration

WGIN 1 (2003-2008) project funded partners John Innes Centre Rothamsted Research + 2 pilot projects (2 yr) WGIN 2 (2009-2014) project funded partners John Innes Centre University of Nottingham Rothamsted Research + 2 pilot projects (1 yr / 2 yr)

£942K WGIN 3 project (2015-2018) – funded partners John Innes Centre Rothamsted Research

+ Bristol Genomics Facility, Univ. Bristol, UK + Arbor Biosciences, Michigan, USA

Two specialist sub-contractors

£1,600K

WGIN 4 project (2018-2023) – funded partners John Innes Centre Rothamsted Research

- + Bristol Genomics Facility, Univ. Bristol, UK (35K wheat array)
- + Arbor Biosciences, Michigan, USA (MyBaits exome capture WAKs)
- + NIAB, Cambridge, UK (yellow rust race tests)
- + Dovetail Genomics, San Diego, USA (sequence / assemble one wheat chromosome)

Four specialist sub-contractors

Mission statement - WGIN 2003 to 2014

Improving the environmental footprint of farming through crop genetics and targeted traits analysis

Mission statement - WGIN 2015 to 2023

Improving the resilience of the wheat crop through genetics and targeted traits analysis

What has WGIN achieved ?

- New genetic resources and tools
- Defining new traits for wheat
 improvement
- Maintaining and enhancing the public – private network
- Increasing funding into wheat research
- Training the next generation

New resources / tools developed in WGIN THE BIG FIVE

- A reference UK mapping population
 Avalon x Cadenza (DH popⁿ, 203 lines + 584 lines)
- Restoration of the AE Watkins wheat collection
 > 1200 lines from 31 countries
 never previously used in modern breeding
- EMS chemical mutagenised TILLING populations Cadenza and Paragon (> 5000 lines + 1200C lines DNA)
- A global collection of *T. monococcum* accessions (AA genome) ~ 323 lines, 34K breeders array + 5 F₆ popⁿ
- Grain samples from WGIN cultivar diversity trials since 2003 (3 or 4 nitrogen treatments / all plots)

Trait identification

Consecutive years of field trials

- 1. Improved nitrogen use efficiency (NUE)
- 2. Grain quality traits linked to NUE
- 3. Tolerance to spring drought

Malcolm Hawkesford, RRes

Trait identification – RRes

2. Reducing pest and disease pressure

annually all crops at high risk

crops 2nd wheat syndrome

Take-all build-up (TAB) trait

Cereal aphid resistance in wheat

Growth room tests

Т. топососсит

Wheat variety

English grain aphid

Field trials

T. monococcum (diploid wheat)

2017 2018

Watkins Landraces

Field trial Rothamsted 2018 Total aphids / plot - 25 tillers counts Total ap

Gia Aradottir, RRes

A global collection of *T. monococcum* Einkorn wheat accessions (A^mA^m genome) ~ 323 lines

Rarely used in modern wheat breeding

Core collection

- 50 accessions from the Vavilov Institute in St Petersburg, Russia
- pre-selected for high resistance to pests and diseases from 19 field trials / multiple years across Russia (1950-1980s)
- 50 small batches of 'mixed' seed arrived @RRes in 2004, WGIN 1

Triticum monococcum traits and introgression

2004 - 2006 – generated pure lines by single seed decent

2005 onwards glasshouse and small plot field trials (numerous traits)

Introgression started in 2006 (WGIN 2) and 11 years later crossing strategy No 3 is working !

Mike Hammond-Kosack, RRes

WGIN 3 Tm introgression strategy No 3 – using tetraploid durum wheat as bridging species

The traits

- MDR031 take-all resistance
- MDR049 aphid resistance
- MDR308 septoria leaf blotch resistance
- All 3 *Tm* lines fully resistant to mildew, brown and yellow rust (all growth stages)
- **Fertility rates**

Stage 1 - 0.47%

Stage 2 17.52% (37 fold increase)

The Networking objectives

Maintaining and enhancing the public – private network

8 of the 20 activities

The Defra WGIN: Dissemination, Liaison and Communication

Annual "Stakeholders' Forum" (Nov) 70-100 attendees Focussed Workshop – 2009, 2013 'A x C mapping popⁿ' 2010 – DArT marker analysis Workshops with overseas partner organisations: Seven in total funded by BBSRC (2018 – Kazakhstan) Web Site (www.WGIN.org.UK) **Electronic Newsletters** Wheat Scientific publications ~ 78 articles Genetic Annual displays at 'Cereals' E. mail: wgin.defra@bbsrc.ac.uk Improvement Twitter Handle - **@WheatGIN**

The WGIN 3 legacy so far

- Scientific publications 23 peer reviewed articles
- Helping in the training of 11 PhD students
- **Since 2015 new funding Total = £29,940,463**
- Designing Future Wheat (2017) BBSRC Institute Strategic Programme Grant (2017-2022) – combines six Institutes and two Universities £19 million (PI Graham Moore, JIC)

£10.94 million for 16 new wheat projects involving various sponsors 11 projects on new topics 80% lead by PIs not sponsored in WGIN

WGIN 4

WGIN Breeders Priority Traits Questionnaire (August – November 2017)

- Based around the 10 main traits (used for the promotome capture exp) plus additional traits identified by the WGIN team 107 sub-traits
 - Eight breeding companies contacted individually
 - Outcome: high level of consistency between companies but also notable differences
 - Summary of the top results. Max score 30

WGIN Breeders Priority Traits Questionnaire (August – November 2017)

Presented to all the breeders at WGIN MM 1st Feb 2018

Resilience	Sustainability	Quality	Resource
			emciency
29* Septoria leaf blotch	24* Lodging	25* Specific weight	23* Nitrogen
29 BYDV	24 Deep rooting	23 Grain protein deviation	
28 Loss of chemistry	24 Early root establishment	22 Pre harvest sprouting	
25 Yellow Rust	24 Floret fertility	22 Grain size	
24 Floral health - ergot	23 Yield stability	22 Grain filling rate	
24 Floral health - fusarium	23 Season independent yield QTLs	22 Grain filling duration	
23 Aphids	22 Context independent yield QTLs		
22 Bulb Fly	22 Sterility		
	22 Staygreen - canopy senescence		
	22 Stem Height		
	22 Spikelet fertility		
* max value 30	22 Ear size		

WGIN Breeders Priority Traits Questionnaire (August – November 2017)

included in WGIN 4

Resilience	Sustainability	Quality	Resource	
			efficiency	
29* Septoria leaf blotch	24* Lodging	25* Specific weight 🛑	23* Nitrogen	
29 BYDV	24 Deep rooting	23 Grain protein deviation		
28 Loss of chemistry	24 Early root establishment	22 Pre harvest sprouting		
25 Yellow Rust	24 Floret fertility	22 Grain size		
24 Floral health - ergot	23 Yield stability 🛑	22 Grain filling rate		
24 Floral health - fusarium	23 Season independent yield QTLs	22 Grain filling duration		
23 Aphids	22 Context independent yield QTLs			
22 Bulb Fly	22 Sterility			
	22 Staygreen - canopy senescence			
	22 Stem Height			
	22 Spikelet fertility			
* max value 30	22 Ear size			

Wheat Genetic Improvement Network (WGIN4) 2018-2023

Department for Environment Food & Rural Affairs

WP1 Management Meetings – The Network

Red text - new to WGIN 4

83

WP1 Enhancing the Network and Communication of Results

- AHDB strategic and monitor farms
- Website
- Annual Stakeholders forum
- International collaborations
- **WP2 Tools and Resources**
- Maintain and further develop, mapping popⁿ, Paragon lib, Watkins/Gediflux, *T. monococcum* collections
- Observation plots on candidate cultivars
- Complete the A x C NIL TILING popⁿ/ CSSL
- Complete the T. monococcum introgression
- Sequence and assemble T. monococcum Chr 7A
- Trait related gene-specific marker development (KASP) from the
 PROMOTOME capture and *WAK* capture exps

WP4 Genetic and QTL Analyses for each of the targeted traits (WP3)

Electronic Newsletter

- Focussed UK/intl. workshops
- Public outreach
- Publications + data deposits

Wheat

Genetic

mprovement

WP3 Targeted Traits

Improving Crop Resilience (30%)

- BYDV resistance, slug resistance
- Take-all resistance and 3N re-rooting
- Septoria and yellow rust resistance
- Yield Stability / Sustainability (25%)
 - Spring drought tolerance
- Lodging resistance, stem anchorage Enhanced Resource Use Efficiency (20%)
 - Nitrogen use efficiency (NUE)

Quality Resilience (25%)

- Yield-to-grain protein, NUE
- Nutrient partitioning vis N-input and disease

Fine Phenotyping at Multiple Scales

Sub-Contractors – NGS Genome / Exome Analyses / Yellow Rust Races

[red text - new to WGIN4] [black text - continuing from WGIN3]

Defra

Martin Cannell, Giulia Cuccato and David Cooper (RAG)

WGIN 3 / WGIN 4

RRes - Kim Hammond-Kosack Peter Shewry Malcolm Hawkesford Vanessa McMillan Kostya Kanyuka Lesley Smart

Gia Aradottir Michael Hammond-Kosack

JIC – Simon Griffiths Clare Lister

XX

Department for Environment Food & Rural Affairs

UoN - John Foulkes (WGIN 2)

Bristol Genomics – Jane Coghill's team Arbor Biosciences – Michigan, USA

The farm / trials staff at all the sites used Numerous summer students

The Management team The Plant Breeders (9) ADAS AHDB Camden BRI NIAB Univ Bristol Defra

www.WGIN.org.UK